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The propagation of brittle cracks in compressed bodies is considered. In section 1, basic
features of the strength theory of brittle bodies are considered in the idealized case of
crack with free edges. In section 2 an effective closed solution of the plane elastic pro-
blem is obtained for ‘closed’ cracks distributed along a straight line. A ‘closed’ cracks is
considered as a mathematical cut along which jumps in normal displacement, normal stress
and shear stress (the latter in particular becoming equal to zero), are given. The interaction
of forces between opposite edges of the cut may be completely arbitrary and nonlinear(in a
linear case, dry Coulomb friction with coupling). The solution obtained is used in section 3
for a more exact consideration on the problem of strength of brittle bodies under compress~
ion. It is shown that the strength of compressed brittle bodies is fully determined by the
presence of shear cracks and by some material constants which characterize the shear
strength (basically by a so-called [1] shear modulus of cohesion). In section 4 an inde-
pendence law is stated which implies that the growth direction of an arbitrary ‘closed’
crack and the nature of fracturing is fully defined by material properties at the crack tip.
At the same time, the angle between the original direction of the ‘closed’ crack and the
deviating crack assumes a ‘quantised’ value: 0° or 75° An epplication is shown in section
5; a theoretical picture of a rock burst is considered and some conclusions are derived
regarding the safest shape of excavations. The present state of the rock burst problem and
the degree of qualitative understanding of this effect is discussed in the monograph of
Avershin [2] and partly in the book of Khodot [3]. Basic ideas and hypotheses of the crack
theory, as developed by Barenblatt (see a review [4]), have been employed in the present
work. It should be noted that literature dealing with cracks in compressed bodies is practic-
ally nonexistent ; the only recent paper [5] has a number of shortcomings.

1. An improved theory of strength of compresse d brittle bodies. In accordance with
Griffith’s ideas, a real brittle body has many defects or microcracks, where the surface
energy is accumulated. Then, fracture of the body in tension is explained by a more
facorable possibility of elastic energy transfer into the surface energy. According to
present ideas 4], a crack starts to extend whenever the stress concentration factor

reaches a definite constant value which characterizes the strength of a material.
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Let us consider the problem of strength of brittle bodies in compression. Let a
straight crack be imbedded in a compressive stress field (principal stresses at infinity are
equal to N, and N,). Sides of the crack are temporarily considered as stress-free. This
somewhat artificial case may be visualized as one of a crack being originally a cavity, the
sides of which did not come into contact during compression. For simplicity, we will con-

fine ourselves to the case of plane strain.

Utilising the solution of Muskhelishvili [6], we shall compute the stresses 0%, 0y,
and Tyy,. We assume that the crack of length 2!, extending along the x-axis with its centre
at the origin of Cartesian coordinates xy. We have

Az
x=R [ — —_—
6y+ 6 e —— + (IVy— Ny) cos 2a
Al (z —72) iRe Az

GU._ lTxU = '——4 (_22_12)3/2 - B Vz3—12 ’

z=z+1y 1.1

A=N;+ N;—(N,—Nz)e%* (N, <0, Ny<0)

Where G is the angle between the x-axis and the direction of the principal streas N,.

In the vicinity of the crack tip in its original direction at z = [ - €, where e ]

the stresses (according to (1.1) behave as follows:
’ . -
Oy =0z =+ [Ny + Ny — (N, — N,) cos 2a] ]/%

(1.2)
1 .
Tey = — = (Vo — Ny) sin Za]/;-g

We will introduce the following basic Hypothesis A. Under conditions of compression,
the crack will always be a tranaverse shear crack (for simplicity, it will be called a shear
crack). The beginning of propagation of an equilibrium crack will be determined by a stress-
concentration coefficient of the single stress component Ty, specially since the stresses

o, and ay are compressive.

In case of transverse shear, the critical load causing propagation of the crack along
a straight line in accordance with (1.2) is given by the condition {1]

aY T(N, — N, sin 20 =2} 2L (1.3)

Where L is the shear cohesion modulus [1], analogous to the cohesion modulus K for
normal tensile cracks [4]. L is a constant and describes the resistance of a material to

transverse shear.

For comparison, we will also consider the case of the field of tensile stresses N, and
N;. If we assume that the crack will be a cleavage crack or, in our terminology, a normal
tensile crack extending along a straight line then, by (1.2) and the Barenblatt’s condition,
the critical load may be found from the equation

aY UIN, + N, — Ny — Ny) cos 2a] =228 (N;>0, Ns>0) (1.9)
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By considering equations (1.3) and (1.4), the following simple conclusions which are
in good agreement with experimental data [7] can be made. Equations (1.3) in particular,
imply that among many initial microcracks randomly orientated the most dangerous trans-
verse shear microcracks are those which are oriented at 45° with respect to the planes of
principal stresses N, and N,. According to (1.4), the most dangerous normal tensile cracks
are those which are parallel to the plane on which the highest tensile stress is applied. From
this it follows that, at least at the beginning of fracture, if it is caused by transverse
cracks, then the fracture surface will be inclined at 45°to the directions of principal
stresses. In case of normal tensilz fracture, its surface will coincide with the surface of
the maximum principal tension stress. Further, from (1.3) it follows that fracture in com-
pression, like tensile fracture, has an unstable, sudden nature since the crack does not
extend initially but it becomes unstable as soon as the critical value of shear stresses

is attained.

We will introdace a concept of an isotropic brittle body. We will assume that accord-
ing to this concept the magnitude of strength of the body is independent of the direction of
tension or compression. This is obviously equivalent to the assumption that the most
dangerous shear and tearing microcracks always in a macroscopic body during its com-
pression or extension in any direction. Corresponding generalisations for the case of
anisotropy do not cause serious difficulties.

In case of uniaxial compression or tension of bodies with the most dangerous cracks,
equations (1.3) and (1.4) respectively will have the form:

s =2 VaL s — V2K
ooavr’ T oaVi (1.5)
Where o, and 0_ are absolute values of strength of an isotropic brittle body in com-
pression and in tension, respectively. From equations (1.5) we obtain:
s. K

from which it follows that for the materials whose tensile strength is considerably
higher than their compression strength, a crack in tension will be, as a rule, a normal tear-
ing crack.

The type of crack determines the nature of fracture : tearing or shear. This conclusion
may be easily changed for the case of an arbitrary, nonhomogeneous, general field of stress.
In particular, it may be shown that one part of the crack occurs by normal tearing, while the
other part by transverse shear.

In materials where the compression strength is comparable to tensile strength
G, ~ O_, a crack may be a transverse shear crack even in a tensile stress field and,
it will be propagated at an angle of 45%to the direction of tension. This has been observed
for plastic materials [7]. In accordance with (1.3), the tensile strength of such materials
will be expressed as:
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5 — 2V2L
- Ayl

The hypothesis A defines a class of materials whose fractare in compression may be
described by the present mechanism. It seems, from experimental data [7 and 3] that this
mechanism is best applicable to strong, monolithic brittle materials which break in com-
pression into relatively large pieces. Another mechanism for fracture in compression is
possible, as described by the present writer in [8]. This mechanism is connected with a
local instability and with local ruptures of the material. It is obviously more characteristic
for materials which have a locally non-homogeneous structure. In this case of fracture,a
test specimen breaks into a large number of small pieces [8 and 2]. In the latter case,

local ruptures may occur both by shear and cleavage mechanisms.

2. An elastic problem for a plane with straight cuts (a plane problem). Let the region
occupied by the body be an infinite plane with rectilinear slits Ly = aibx (kK =1,
2, . .., n), which are distributed along the straight line which we will take as a real

axis Ox. We denote the set of segments L, as L.

Streases and displacements in a plane elastic problem may be described [6] by
Muskhelishvili’s potentials @ (z) and ¥ (z), where z = x + iy. The following basic relations
are valid: :

Ox + Ty = D (2) + D (2) — Q(2) — (z —2) D" (2)
Gy — oy = D (2) + (D—(z) + Q(2)+ (2 ~—E) @’ (z) (2.1)
2u (St i 2 =0 —® (2) — Q@) — (:—2) V' (2)

Here u, and v are coordinates of the displacement vector in the direction of Cartesian
coordinates x and y; Ox, Oy, and Txy are components of the stress tensor; i and y are
shear modulus and Poisson’s ratio, respectively; % = 3 — 4v for the case of plane
strain and % — (3 — v) /(1 - V) for the case of plane stress.

Q(z) =20"(2) + V¥ (2

We assume that at large distances stresses become linear functions of coordinates.
This case occurs for example in bending problems or, if the force of gravity is taken into

account. Then, near the point at infinity, functions ® (z) and Q (z) may be written as:

D (2) =ayz +a, + a,z”' 4 0 (z7%),

Q(2) =byz + b, + bzt {0 (z-) (2.2)

According to (2.1), the coefficients a,, a,, b,, b;,, and b, are expressed by means
of mechanical quantities as follows:

X4iY k1) X —(x—1)iY . ,
_2:‘(1_}_”)1 ‘b2— 2ﬂ(1+1€) ’ a, = /4(N1+A2)
by=—"1/3(Ni-—Ny) ez, ag="1/,[c,+ cz—i(ea + ca)l,

bo = a2 (cs — 1) + ics

a2=

(2.3
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Here (X, Y) denotes the main vector of external forces applied at the sides of the set
of slits L ; N, and N, are values of principal stresses at infinity, @ is an angle formed by
the axis corresponding to N, and by the x-axis. Constants ¢,, Cy, €3, C4, C5, and C4

determine linear behavior of stresses at infinity:
Ox =T + Yy Oy = CT + C4lfy Txy = 6T + CgYf (2.4)

When the vector of constant body forces (g, g,) is present, then the following

identities obviously hold for the constants ¢,, ¢4, C5, and Cg,:
¢, + ¢ + 8 =0, ¢4 +¢ + 8 =0 (2.5)

Let us suppose that the interaction between opposite borders of slits is of the type of
dry Coulomb friction with coupling and that boundary conditions on slits L may be expressed
as follows:

[v] = d(.’t), [GU] = B(x)v [Txy] = T (.’E)
T =—k" (@) + " ()0," on L @.6)

Here a (Jf), B (2), v (2), k*(z), and p*(zx) are given functions. The parenthesis
([a] = qt — a~) denotes the jump in the value of a across the line L ; symbols (+) and
(=) denote valees on the upper and lower border of slits L, reapectively. The symbol (1)

is used for simultaneous entry of conditions on both the upper and lower borders.

Boundary conditions (2.6) describe a large number of particular cases. For example,
when opposite sides of slits which are contiguous with each other exibit relative slipping
with a constant coefficient of dry friction p and with constant coupling k&, then the follow-

ing relations hold:
a(x) =B (x) =y (2) =0 (>0, p>0)
k* (z) =k () =k = const, p* () =" p () =p =const (2.7

By using basic Equations (2.1), the boundary conditions (2.6) may be written as
follows:

@)+ D)+ Q@I =B()—iv(t) on L
[(x+ 1) (@ @) — D (t)) + Q (1) — Q(t)] = 4piw'(t)  on L
QF (8) — QF (1) = — 2ik™ (1) + ip™ (£) (207 (¢) + 207 (1) + QF (1) + QF (¥))

(2.8)

From the first two boundary conditions of (2.8) we can see that:

ImQ ()] =7(8), Im® () = ;o (20 (1) —7 ()
(Re (2D (£) + (N —B(H) on L

(2.9

From (2.9) it follows that the analytic function 2 (z) -+ © (2) exibits a discontinuity
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f(¢) across the slits L:
(2.10)

20 (1) + Q@ =70, FO) =B + g7 G’ (@) +x — Dy
Hence, by employing Conditions (2.2) at infinity and according to the Sokhotskii-

Plemeli formula we obtain:

20() + Q) = g 2y + Cakb)zt 2t
L

By (2.9) and (2.11), the last boundary condition (2.8) may be written as
QF)— QT () =g () on L
g% (1) = — 20k* (8) + ip* () {+=B () +

+%§[~((¢):;‘1 4 L] 4 | 4a, +2Re b, + 2t (2Reao + Rely)}

(2.12)

%41
Solution of the Dirichlet problem (2.12) for the outer parts of slits distributed along one
and the same straight line is treated in the monographs of Muskhelishvili [9] and Gakhov
[10]. Finally, taking acount of conditions at infinity (2.2), the solution of the boundary
value problem (2.12) in the class of function which are unbounded (but integrable) at the

ends of slits Lk is

__1 (" () + g~ ()] X (2)
Q(2) _4niX(z)S Tz dt +

(2.13)

1 t)—g (1) n+()
+Hi‘§ (t) g(tdt+ X(lz) (bo+bO)Z+ 5 (b + b))

Here Pnyq (Z) is a polynomial of the (n + 1) order with purely imaginary coefficients.
(2.14)

n
Poa(2)=Coz™ + Cuz* 4.+ Coty X () = [[ —an)" (z—bw)"
k=1
We assume that the function X (2) for large z becomes
X (2) = 2" +anqz™t + 0 (%) (2.15)
While X (¢) is the value of X (z) at the upper surface of slits L.

It remains to determine the coefficients of the polynomial Pnyy (2). The coefficients
¢o and ¢, are readily found from conditions at infinity (2.2), which after expansion of {} (z)
about the point at infinity and comparison of coefficients of z of the first and zero power

give
Co=ilmb, €y =ilmby + dunyImbo (2.16)

The remaining n coefficients may be found from n conditions which express the fact
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that the discontinuities in both, v and dv/dx are given across the slits. These conditions
may be written as a system of n linear equations in terms of the unknowns C,, C, . . .,
Cn41 and it may be shown that the solution of the system is unique (in a way which is
entirely analogous to that used in the book of Muskhelishvili [6]). If the vector of external
forces (X, Y) is given, two of these conditions may be obtained simply from the expansion

at infinity.

Note. The described method of solution of the elastic problem (2.6) leads also to an
effective closed solution of a seemingly much more difficult nonlinear problem,when the
interaction of forces between the opposing slit edges is of arbitrary nature

Ty == F(Gy) (2.17)

where F (x) is an arbitrary function. At the same time, boundary conditions of the elastic
problem may be given in the form

[Pl=a(), [o)=8), [tyl=v(@ Ty=F() on L (218
It is easy to see that the solution of the last problem (2.18) will be expressed by the
equation (2.11) and by (2.13) in which g ~ (¢} is

gE ) =F (v ()}

1 1 d
Vi (t)zﬁe{in(,)_’_ﬁgf:rl: +(240+bo)t+2al+b1} (2.19)
L

Here, as previously, the principal value of the integral is considered. Let us
emphasize that the expression (2.11) is solely the result of conditions of discontinuities
in normal displacement and also in normal and tangential stresses on L.

3. Strength of brittle bodies in compression. We will assume that a real brittle body
contains a large number of randomly distributed microcracks or slits. It is impossible (and
unnecessary) to determine the interaction between these microcracks exactly, hence the
following approximate approach will be employed.

We will choose one arbitrary microcrack and ‘blur® all other microcracks throughout
the body, replacing their influence on the chosen microcrack by the influence of an elastic
body which we shall now consider homogeneous. This body will have average elastic
constants and will contain no cracks (except for the chosen one). Let us consider the
stress problem in the vicinity of the chosen crack.

Thus, let us consider a straight crack which is plane deformed in a stress field of two
principal compression stresses N, and N,. The crack of the length 2! lies along the x-axis
with its center at the origin of Cartesian coordinates xy. Opposite sides of the crack touch
each other at every point due to compression loading so that the crack in this case re-
presents a line of discontinuity of the tangential displacement u only, The displacement
component v, normal to the crack surface is not discontinuous. Equilibrium considerations
require also continuous stresses g and 7, . Another condition should be added which

x
would describe the interaction of tﬁe opposite sides of the crack when they touch each other.
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This condition will be assumed as the one of dry Counlomb friction with coupling. The
coupling constant k and the friction coefficient are assumed constant along the entire
crack (. >0, p > 0).

It should be noted that condition of dry Coulomb friction with coupling is a more or
less good representation of physical conditionsof the real problem only if the opposite
surfaces of the crack slide along each other. If such sliding does not take place (e.g., if
the crack lies in a plane of the principal compressive stress), this condition becomes un-
acceptable. Finally, the boundary conditions are written as

jz|<i when y=20
[v] =0, lo,] =0, [t} =0, Ty =—Fk+po, 3.1

Due regard is given to the sign of the streas o, in the last condition of (3.1) (also,
the direction of shear is given).

The elastic problem (3.1) is a particular case of the general problem (2.6). Obviously
the following relations hold:

a{@)=B(ax) =y =0, k(2)=Fk p(a)=0p, f(2)=0, ao=bo=0
ag == b, = 0
g5 () = g = — 2ik + ip [Ny + Ny — (Ny — N,) cos 2al
Co=C3 =0, C;=1,i(Ny— Ny)sin2a (N, < 0, N, <0)

3.2

In the particular case (3.2), the formulas {2.11) and (2.13) will become
20 (5) +Q(e) =2a, b,  Qz)= (22{"} £ g"-i- g+ Rebty (3.3

We will now consider the state of stress in the vicinity oi the end of the crack at
2= 1+ ¢, where ¢ = re'®(r < I) When = + 1, functions ® (3) and Q () become

Q(z) = —20(z) = (2012 ng Vi e o) (3.4

(r and 6 are polar coordinates with their centre at z = ). Hence, according to (2.1) the
stresses at the crack tip may be written as:

O+ ity = BiV1/, 1/ (38— e — i sin 0-¢i%)i®

6, — ity = Bi V‘{’_gETr (—1— " - isin G-ew)ex"ie

B =1, [2k — p (N1 4+ N2) + (N1 —N,) (p cos 20, -} sin 2a)]

{3.5)

According to (3.5), the stress components are expressed in polar coordinates r and 8
by formulas:

6y 46, =0, +0,=— 4B V3l/rsin 1,8
Sy ==, + 2i%,g =2B Y i}l [r ie"** (2 — i 3in 8¢ ) (3.6)

In particular, the stress components along the real axis i.e. when y =0, are
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o, =0=1/; [N + Ny — (N, — N,) cos 2a]
‘ ={—-k+95 for Ix|:<l_
o —k+ps+2B|z|/ VE—B for |z]|>1
O, = T=1, [Ny + Ny + (N, — N)cos2a]  for | 2|>1 (6.7)
6,=1—4Bz /Y IF—2* on the upper surface for |x| <1

6, =%+ 4Bx/ VE=2% on the lower surface for | x!<{

Obviously, the stress g, along the crack and in the direction following it is constant
and equal to the same stress 0, which would exist at every point of the body if the crack
were absent. This is easily seen to be true for any number of cracks which are distributed
along one and the same straight line. This fact is also independent of the nature of inter-
action between opposite sides of cracks and follows only from conditions of continuity of
normal displacement, shear stress and of normal stress.

The stress 0, is constant on the line of extension of the crack. At | z|<{ I, near to
crack tips, the stress o, tends to be infinite, the sign being different for the two ends
along one side and also for two sides at one and the same crack tip. Finally, we introduce
a formula describing shear stress concentration at a tip of the crack and on its line of
extension :

T =2BVil/r+0(1) for y=0, z=1+r (3.8)

We now make use of the hypothesis 4 : a crack under compression will always be a
transverse shear crack.

Introduction of this hypothesis is justified by the fact that in the vicinity of a crack
tip and on its line of extension, stresses 0, and g, do not have singularities and only the
stress 7, tends to infinity, in accordance with (3.8). It is natural to assume, therefore,
that the onset of crack propagation is determined only by the concentration coefficient
of the shear stress 7, . Simple computations, according to (3.6), further show that 7, is
the maximum shear stress at the points of the body near the tips of the crack and on its

line of extension. The critical load follows from the condition [1]

mBY1=—LV2 (L>0) (3.9)

We shall now determine distribution of the most dangerous transverse shear cracks.
These are obviously the cracks at which the critical value of the shear stress concentra-
tion coefficient is attained first, for otherwise equal conditions. This means that the
orientation of the most dangerous cracks is defined by the angle which minimises the
modulus of the function B (). Analysis of the function B (@), given by (3.5), shows that
depending on the direction of relative shear of the opposite sides of the crack and of the
relationship between N, and N,, the most dangerous cracks may lie at the angle of
% cot™1p or at the angle of %77 + % cot—!p with the direction of N,. For example, for
p = 0.3, the value of % cot=1p is 37°. In this case, if the friction coefficient p is equal
to zero, which corresponds to the case of coupling (adhesion) friction between opposite
surfaces of the crack only, the most dangerous shear cracks will be distributed at the
angle 45°to the planes of principal stresses. The last result is identical with a corresponding
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result obtained from the simplified theory.

In case of uniaxial compression of a body containing the most dangerous crack, the
condition (3.9) will become

2 VEL)
z -\\ = o= (x+ <7 610
L N8 . ,
he formula (3.10) defines strength of
\ s an isotropic brittle body in compression as
7 \, 4 N a fanction of the shear cohesion modulus L,
a \ 2 / o of the coupling (adhesion) constant &, of
NG g the friction coefficient p and of the original
/ Nz L length I. The higher the magnitude of &, L
\2 / and p, the higher the compression sirength
-2 \/ 0, of the body. The shorter the original

crack length, the higher the strength o,
Equation (3.10) shows also that as soon as
FIG. 1 the load attains the limiting value o, the
equilibrinm of a body containing a crack 2!
long becomes unstable and further increase in load leads to dynamical growth of the crack.
In case of ideally smooth surfaces (k = 0, p = 0) the compression strength of a body

equals the value of strength which was obtained from the simplified theory {first equation
of (1.5)).

It is of interest to compare the moduli of cohesion L and K. By using the second
formula of (1.5} and the relation {3.10) we obtain:

£=£.+.~.(M—_E§_:e__k.)

=% 3 or (3.11)

4. An arbitrary ‘closed’ crack. Let us consider a brittle body of arbitrary shape under
some loading, which contains an arbitrary curvilinear crack such that its opposite sides
touch each other at the end of the crack (sayybecause of the local compression). Let us
choose the origin of pelar coordinates r sc as to coincide with the tip of the
crack in question (@ = 0 corresponds to the direction of the crack extention). It
may be shown, by using the ‘microscope’ principle and the formula (3.6), that stresses
Or, Og, Trp and Tmax behave close to the crack end as follows:

Ta == B (P:l)52 (e)r_:/!, Tre =B (P; l)61 (6)?"’1’
Tmax =B (p,1)83 (8)r-n, Gy +0r = — 4B (p,hr- sin?/,0 (4.1
Where

8,(6) =2co0s%,08 {sinBsin'/,0
8,(0) = — 2 [sin 3/, 8 4 (sin /3 6)%], 64 (6) =V'%/, + 3/, cos 20

The function B {(p, 1) depends only on the external load and on the shape of the body.
Functions §, (0), 6, (8), and 8, (8) are shown in Fig. 1.
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It is obvious that all stresses (and any homogeneous combination of stresses) at the
end of the crack may he written as a product of a function B (p, I)r"% , which remains
the same for all stresses and of some function f,which is characteristic for a given stress
(or combination of stresses). This remarkable circumstance follows only from conditions
of contact of opposite sides of the crack at its ends (i.e. from conditions of continuity
of the normal displacement, normal stress and shear stress). The remaining boundary

condition may have an arbitrary character and be more general than (2.17).

This property, which is typical for ‘closed’ cracks, is rather distinctive in comparison
with the case of the crack with load-free sides at the end. It enables formulation of the

following conclusion.

The behavior of a ‘closed’ crack is completely self-governing, i.e. the direction of
crack propagation and the nature of fracture (and also the limiting concentration coeffi-
cient) do not depend on the shape of the body and on external loads but are fully defined
by material properties at the crack end. This argument will be called the Autonomy Law.
Cracks considered earlier were assumed to propagate along a straight line or were forced
to propagate that way (e.g. by cementing). The Autonomy Law allows us to analyze this
assumption. According to the Autonomy Law, the crack propagation direction and nature
of fracture are fully defined by the functions §, (0), 6, (0), and 84 (8) (or by some

other functions provided that they themselves are completely defined).

Let us consider the curves of Fig. 1. It can be seen that the shear stress T,g,is an
even function of & and has three extremesyone at 6=0° (6; = 2) and two at
0= +124° (6, = —1.27). Normal stress 0p is an odd function of A and has, similarly,
two extremes of opposite signs, at § = 4- 75° (62 = 5 2.32).

Analysis of these curves enables us, to explain the basic tendencies of crack pro-
pagation and the very mechanism of fracture itself, in terms of the Autonomy Law.
Fracture may occur by means of the shear mechanism, and the crack always propagates in
the direction of the highest shear stress Trg i.e. in the direction of the extended crack

line § = 0, as soon as the absolute magnitude of B (p, I) attains the limiting value
1
= — 4.2
[B(p, )| =grL 4.2

Such cracks are always straight, in agreement with the Autonomy Law, since the

above theory refers to straight cracks.

Fracture may also occur by means of the tear mechanism, because in the region
0< 0 <morat — g < B<0 atensile stress g, always exists and the normal
tearing crack always spreads from the end r =0 in the direction of maximum g, i.e. at the
angle of @ =+75% or @ = ~75%as soon as the modulus of the magnitude B (p, !} attains

the limiting value

B (p, )| =0.14K (4.3)
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The normal tearing crack has, in the beginning, load-free surfaces since it lies in a
tensile stress region. During subsequent propagation, it-enters inevitably the region of
compressive stresses, and becomes a ‘closed’ crack, i.e. becomes subject to the Antonomy
Law. The crack then has two alternatives: it either propagates in a straight line (shear) or
deviates by + 75° or ~75° (tearing) from the original direction. Depending on the final out-
come, the crack may finish with a completely arbitrary shape ranging from a straight line to

a steplike or *sprucelike’ curve.

Symmetry considerations and the Autonomy Law indicate that in an ideally homogen-
ous material and in a homogeneous field of stress, a crack will either have a strongly

periodic structure or will be more or less straight (if the shape of original defect is

neglected).
m P The ‘quantum’ character of the direction of
N= ‘ propagation discussed above, represents a significant
T— feature of brittle cracks in compressed solid.
P Thus, cracks in compressed bodiss generally
possess a stepwiss structure with known direction
of individual steps; the length of each step de-
== pends on the elastic stress field present in the

body.

A mathematical wolution of the elastic problem
of stepwise cracks is rather complicated. However,
FIG. 2 when the characteristic length of one step is small
in comparison with the entire length of the crack,
the stepwise structure will be just a fine structure of some average smooth crack. Such a
large-scale smooth crack may be again analyzed by the method described above, which leads to
similar results. Then, the elementary volume should be larger in comparison with the char-
acteristic size of the fine step. In particular, for large cracks a generalized Avtonomy Law
holds which indicates that the macrostructure of the crack has, generally speaking, a step-
wise structure with a specific direction of separate steps (0° and 759). When the body is

sufficiently large, a sequence of stepwise structures differing in size may be generally
observed.

5. The rock burst. The rock burst is one of the most challenging cases for the appli-
cation of the theory of crack propagation on compressed bodies. The rock burst is a sudden
outburst of matter into the excavated space without the release of gas. The higher the
rock pressure and strength of material is [2 and 3], the more dangerous it becomes.

The effect may be visualized using a simple theoretical picture. Let us assume that
in a homogeneous, isotropic brittle body there is a horizontal excavation of height 4
(Fig. 2). The excavation is of a usual shape which is close to a rectangular one and is
within a pressure field generated by the rock (N, is the horizontal, N, is the vertical pressure).

An analyais of elastic stresses shows that in front of the excavation at a distance of
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about (1 to 2) & there is an interior focus of concentration of the specific elastic energy
and of the compression stresses 0, (shown by the dashed circle in Fig. 2). It is within
this region, that the shear cracks 40 and OB originating at the sides of the most danger-
ous natural cracks, begin to form and propagate.

During this period which precedes the rock burst a crack forms at the site of unstable
shear cracks, and continues to grow in certain directions, until a stable size which is of
order of the region of concentration, i.e. of order A is reached. Cracks 40 and OB form
a wedge which is pressed out by rock pressure. The magnitude of the force P acting on
the wedge is approximately equal to

P =1 BNy + BVy) (s.1)

where f3; and 3, are stress concentration factors. Thus, the compression strength o, plays
a decisive role during the first period. The second period is characterized by catastrophic
propagation of cracks from points 4 and B towards the corners of the excavation other foci
of stress concentration being present at these comers, and by subsequent outburst of the
matter.

In the instant preceding the outburst, the force P is in equilibrium with the resistance
of the material of the rock, which is equal to 20,A (0, is the shear strength of the material).
Hence we have the relation

Immediately before the second period there occurs a redis-
m tribution of stresses leading to an increase of P and decrease
in A (the excavation moves forwards).

v ;:2 Thus, a rock burst is the result of action of the internal

focus of concentration of specific intemal energy and of com-
pression stresses in front of the excavation. A change in the
FIG. 3 shape of the excavation consisting in subsequent transition into
a cone would remove the danger of a strong rock burst because then
the focus of stress concentration would form at the cusp and all fractures would be ac-
companied by an instant decomposition of mater so that elastic energy would not con~
centrate. As an example, forms of excavations shown in Fig. 3 are safer than the usnal
form, (An ideally safe form would be the form of natural shear).

M

BNy + BN,y =40 (5.2)

Finally, we consider the problem of modeling of the rock burst. As shown earlier, the
decisive parameters are L, K, 0., and O,. We shall denote the characteristic linear
dimension by d. The magnitude of rock pressure will be denoted by p (e.g., N; = p,

N; = yp, Yy < 1). According to the 7~ theorem :

P L Sy K
_GT.___[‘{GSV_(_I'G.,G.V_&,V} (5.3)

The function I" has to be determined from experiments with models.
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