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The propagation of brittle crack8 in compressed bodies is considered. In section 1, basic 

features of the strength theory of brittle bodies ate considered in the idealized case of 

crack with free edges. In section 2 an effective closed solution of the plane elastic pro- 

blem is obtained for ‘closed’ cracks distributed along a straight line. A ‘closed’ cracks is 

considered as a mathematical cut along which jumps in normal displacement, normal stress 

and shear stress (the latter in particular becoming equal to zero), are given. The interaction 

of forces between opposite edges of the cut may be completely arbitrary and nonlinea& a 

linear case, dry Coulomb friction with coupling). The solution obtained is used in section3 
for a more exact consideration on the problem of strength of brittle bodies under comptess- 

ion. It Is shown that the strength of compressed brittle bodies is fully determined by the 

presence of aheat cmcks and by some material constants which characterize the shear 

strength (basically by a so-called [l] shear modulus of cohesion). In section 4 an inde- 

pendence law is stated which implies that the growth direction of an arbitrary ‘closed’ 

crack and the nature of fracturing is fully defined by material properties at the crack tip. 

At the same time, the angle between the original direction of the ‘closed’ crack and the 

deviating crack assumes a ‘quantised’ value : O’ot 75’. An application is shown in section 

5 ; a theoretical picture of a rock burst is considered and some conclusions ate derived 

regarding the safeat ahape of excavations. The present state of the rock burst problem and 

the degree of qualitative understanding of this effect is discussed in the monograph of 

Avetshin [2] and partly in the book of Khodot [3]. Basic id eas and hypotheses of the crack 

theory, as developed by Batenblatt (see a review [4] ), h ave been employed in the present 

work. It should be noted that literature dealing with cracks in compressed bodies is ptactic- 

ally nonexistent ; the only recent paper [s] has a number of shortcomings. 

1. An improved theory of strength of compressed brittle bodies. In accordance with 

Griffith’s ideas, a real brittle body has many defects or microcracks, where the surface 

energy is accumulated. Then, fracture of the body in tension is explained by a more 

facorable possibility of elastic energy transfer into the surface energy. According to 

present ideas [4], a crack starts to extend whenever the stress concentration factor 

reaches a definite constant value which characterizes the strength of a material. 
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Let as consider the problem of strength of brittle bodies in compression. Let a 

straight crack be imbedded in a compressive stress field (principal stresses at infinity are 

equal to N, and NJ. Sides of the crack are temporarily considered as stress-free. This 

somewhat artificial case may be visualized as one of a crack being originally a cavity, the 

sides of which did not come into contact during compression. For simplicity, we will con- 

fine ourselves to the case of plane strain. 

Utilising the solution of Mnskheliahvili [6], we shall compute the stresses u,, tvy, 

and ‘tzu. We assume that the crack of length 21, extending along the x-axis with its centre 

at the origin of Cartesian coordinates xy. We have 

6, + 6x = Re v-& + (K---N,) cos 22 

Qu - ir,, = A12 (z -i) 
4 (ia _ pp 

-;RB &a ’ 
z=z+iy (1.1) 

-4 = N1 + NB--(N1--N2)eaiQ (Nl<o, Nz<O) 

Where u is the angle between the x-axis and the direction of the principal stress N1. 

In the vicinity of the crack tip in its original direction at z = lj-- E, where E (( l 

the stresses (according to (1.1) behave as follows : 

by = 6x = ; [Iv, + N* - (W, -iv*) cos 24 J/z 

xy= -+(N,---N,)sin2a~ 
(1.2) 

z 

We will introduce the following basic Hypothesis A. Under conditions of compression, 

the crack will always be a transverse shear crack (for simplicity, it will be called a shear 

crack). The beginning of propagation of an equilibrium crack will be determined by a streaa- 

concentration coefficient of the single stress component ~xu, specially since the stresses 

uz and or are compressive. 

In case of transverse shear, the critical load causing propagation of the crack along 

a straight line in accordance with (1.2) is given by the condition [I] 

nI/d(N, - IV,) sin 2% = 2fZ (1.3) 

Where L is the shear cohesion modulus [I], analogous to the cohesion modulus K for 

normal tensile cracks [4]. L is a constant and describes the resistance of a material to 

transverse shear. 

For comparison, we will also consider the case of the field of tensile stresses N1 and 

NI. If we assume that the crack will be a cleavage crack or, in our terminology, a normal 

tensile crack extending along a straight line then, by (1.2) and the Barenblatt’e condition, 

the critical load may be found from the equation 

&Z[N, +N, - (N, - N,) co.9 2al = 21/s (N,>O, Ns>O) (1.4) 
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By considering equations (1.31 and (1.41, the following simple conclusions which are 

in good agreement with experimental data [7] a b c n e made. Equations (1.3) in particular) 

imply that among many initial microcracks randomly orientated the most dangerous trans- 

verse shear microcracks are those which are oriented at 45’ with respect to the planes of 

principal stresses N, and N,. According to (1.4). the most dangerous normal tensile cracks 

are those which are parallel to the plane on which the highest tensile stress is applied. From 

this it follows that, at least at the beginning of fracture, if it is caused by transverse 

cracks, then the fracture surface will be inclined at 45’to the directions of principal 

stresses. In case of normal tensile fracture, its surface will coincide with the surface of 

the maximum principal tension stress. Further, from (1.31 it follows that fracture in com- 

pression, like tensile fracture, has an unstable, sudden nature since the crack does not 

extend initially but it becomes unstable as soon as the critical value of shear stresses 

is attained. 

We will introduce a concept of an isotropic brittle body. We will assume that accord- 

ing to this concept the magnitude of strength of the body is independent of the direction of 

tension or compression. This is obviously equivalent to the assumption that the most 

dangerous shear and tearing microcracks always in a macroscopic body during its com- 

pression or extension in any direction. Corresponding generalisations for the case of 

anisotropy do not cause serious difficulties. 

In case of &axial compression or tension of bodies with the most dangerous cracks, 

equations (1.3) and (1.4) respectively will have the form : 

(1.5) 

Where U+ and tr_ are absolute values of strength of an isotropic brittle body in com- 

pression and in tension, respectively. From equations (1.5) we obtain: 

from which it follows that for the materials whose tensile strength is considerably 

higher than their compression strength, a crack in tension will be, as a rule, a normal tear- 

ing crack. 

The type of crack determines the nature of fracture : tearing or shear. This conclusion 

may be easily changed for the case of an arbitrary, nonhomogeneous, general field of stress. 

In particular, it may be shown that one part of the crack occurs by normal tearing, while the 

other part by transverse shear. 

In materials where the compression strength is comparable to tensile strength 

6+ - (J_, a crack may be a tramverse shear crack eveu in a tensile stress field and, 

it will be propagated at an angle of 45’to the direction of tension. This has been observed 

for plastic materials [7]. I n accordance with (1.3). the tensile strength of such materiels 

will be expressed as : 



Propagation of cracks in compressed bodies 99 

The hypothesis A defines a class of materials whoee fractnre in compression may be 

described by the present mechanism. It seems, from experimental data [7 and 31 that this 

mechanism ia best applicable to strong, monolithic brittle materials which break in com- 

pression into relatively large pieces. Another mechanism for fracture in compression is 

possible, as described by the present writer in [S]. Th is mechanism is connected with a 

local instability and with local mptnres of the material. It is obvionsly more characteristic 

for materials which have a locally non-homogeneous structore. In this case of fracture,a 

test specimen breaks into a large number of small pieces [8 and i]. In the latter case, 

local mptnres may occw both by shear and cleavage mechanisms. 

2. An elastic problem for a plane wltb atraigbt cuts (a plane problem). Let the region 

occupied by the body be an infinite plane with rectilinear slits Lk = U&k (k = 1, 

2 , - - - , n), which are distributed along the straight line which we will take as a real 

axis Oz. We denote the set of segments Lk as L. 

Stresses and displacements in a plane elastic problem may be described [6] by 

Mnskhelishvili’s potentials @ (2) aad !’ (I), w h ere I = x + iy. The following basic relations 

are valid : 
-- 

~,+~~,,=~D(~)+~(z)-~(z)-(z-~)~,‘) 

bu - iz,, = 
-- 

0 (2) + 0 (2) + Q (2) + (2 -Z) %qj 
(2.1) 

- - 
2y (g + i $) = xCI) - Q, (2) -Q (2) - (2 --Z) UV (2) 

Here I(, and v are coordinates of the displacement vector in the direction of Cartesian 

coordinates zz and y ; OX, By, and ‘&~l, are components of the stress tensor; p and y are 

shear modalns and Poisson’s ratio, respectively; x = 3 - 4~ for the case of plane 

strain and x = (3 - ,Y) / (1 + Y) for the case of plane stress. 

Q (2) = 20 (2) + Y (2) 

We assume that at large distances stresses become linear functions of coordinates. 

This case occws for example in bending problems or, if the force of gravity is taken into 

account. Then, near the point at infinity, functions @ (I) and 0 (z) may be written as: 

0 (4 = Q.02 + a, + a,z-1 + 0 (z-y, 

s-2 (2) = b,z + b, + b,z-’ + 0 (z-2) 
(2.2) 

According to (2.0, the coefficients a,, a,, b,, b,, and b, are expressed by means 

of mechanical quantities as follows : 

a,=-- x + iY 
2x (1 +x) ’ 

& = &+1)X-b---I)iY 
zn(l+X) ’ a1 = ‘/a (Nl .+ bT2) 

b, = - ‘/2 (IV, -- iv,) @a, ~0 = ‘/4 [cl + c3 - i (~2 + cdl, 

bo = ‘/z (c3 - G) + ic, 
(2.3) 
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Hare (X, r) denotes the main vector of external forces applied at the l fdes of the met 

of slits 15 ; N, and Nr are values of principal stresses at infinity, u is an angle formed by 

the axis corresponding to N, and by the x-axis. Constants cl, C,, Cg, Cd, Cg, and Cg 

determine linear behavior of stresses at infinity: 

a, = Cl5 + c.g, O’y = C$ + c4y, zxy -= c5x + qjy (2.4) 

When the vector of constant body forces (gX, gU) is present, then the following 

identities obviously hold for the constants Cl, C4, C5, and Cg, : 

Cl + C6 y- gx = 0, c4 + c5 + g,, = 0 (2.5) 

Let us soppose that the interaction between opposite borders of slits is of the type of 

dry Coulomb friction with coupling and that boundary conditions on slits L may be expressed 

as follows : 

[VI = a(z), [%I = P (47 KCYI = 7, (4 
+ z,,T = -k* (3) + p* (3) q,’ on L (2.6) 

Here a (z), B (s), Y (r), k*(z), and p*(s) are given functions. The parenthesis 

([al = a+ - a-) denotes the jump in the value of a across the line L ; symbols (+) and 

f-1 denote valaes on the upper and lower border of slits L, respectively. The symbol (k:) 

is used for simultaneous entry of conditions on both the apper and lower borders. 

Boundary conditions (2.6) describe a large number of particnlar cases. For example, 

when opposite sides of slits which are contiguous with each other exibit relative slipping 

with a constant coefficient of dry friction p and with constant coupling k, then the follow- 

ing relations hold : 

a (5) = B (2) = y (4 = 0 (k>Ov P>O) 

k+ (4 = k- (5) = k = const, p+ (2) =- p (z) = p = const (2.7) 

By using basic Equations (2.11, the boundary conditions (2.6) may be written as 

follows : 

-- 
[@ (t) + @ (q + Q WI = P (t) - ir ct> on L 

(2.8) 
[(X + 1) (0 (Q - @ (t)) + Q (t) - Q V)l = 4W’ 6) on L 

!A* (t) - Qf (t) = - 2ik” (t) + ip* (t) (2(D* (t) + %P* (t) f- 52’ (t) + Q* (t)) 

From the first two boundary conditions of (2.8) we can see that: 

[ImSZ(t)] =7(t), [Im~(t)=~~(2~~‘(t)--~(t)) 

[Re (2@ (t) + Q CO)1 = P (t) on L 
(2.9) 

From (2.9) it follows that the analytic function 2@ (z) + s! (Z) exibits a discontinuity 
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f(t) across the elite L : 

Km (Q + Q (01 = f (a f (4 = B (G + X5 (4w’ 0) 

(2.10) 

+ (x - lhw 

Hence, by employing Conditions (2.2) at infinity and according to the Sokhotskii- 

Plemeli formula we obtain : 

2@ (zl+ Q (z) = &yg + (2ao + b,) z + 2a, + bl (2.11) 
L 

By (2.9) and (2.11). the last boundary condition (2.8) may be written as 

sZ* (t) - Q’ (t) = g’ (t) on L 

g2 (t) = - 2ik* (t) + ip* (t) (5-P (t) -l- 
(2.12) 

+ f j[r (z) s + ‘s] &- + da1 + 2Re b, + 2t (2Re a0 + Re by)) 

Solution of the Dirichlet problem (2.12) for the outer parts of slits distributed along one 

and the same straight line is treated in the monographs of Muskhelishvili [9] and Cakhov 

[lo]. Finally, taking acount of conditions at infinity (2.2). the solution of the boundary 

value problem (2.12) in the class of function which are unbounded (but integrable) at the 

ends of slits Lk is 

k’ (t) ‘,“I’,“” x P) & + 

.!7+ (t) - g- P) P,+r (2) 
(2.13) 

t-z df + y@-- + ; (bo + 60) 2 + +(a + 6,) 

Here P,+, (z) is a polynomial of the (n + 1) order with purely imaginary coefficients. 

(2.14) 

P,,, (2) = Coz”+r + ciz* + . . . + c,,,, x (2) = lljI (2 --uk)“+- bk)” 

k=l 

We assume that the function X (I) for large I becomes 

x (z) = 2fi +an-~z*-’ + 0 (2”~“) (2.15) 

While X (t) is the value of X (a) at the upper surface of slits L. 

It remains to determine the coefficients of the polynomial pn+l (2). The coefficients 

co and ci are readily found from conditions at infinity (2.2), which after expansion of Q (s) 

about the point at infinity and comparison of coefficients of E of the first and zero power 

give 

Co = i Im b,, Cl = i Im b, + ia,-,Im b0 (2.16) 

The remaining n coefficients may be found from n conditions which express the fact 
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that the discontinuities in both, v and dv/dn are given across the slits. These conditions 

may be written as a system of n linear equations in terms of the unknowns C,, C, . . . , 

C nt1 and it may be shown that the solution of the system is unique (in a way which is 

entirely analogous to that used in the book of Uuskhelishvili [6]). If the vector of external 

forces (X, Y) is given, two of these conditions may be obtained simply from the expansion 

at infinity. 

Note. The described method of solution of the elastic problem (2.6) leads also to an 

effective closed solution of a seemingly much more difficult nonlinear problem,when the 

interaction of forces between the opposing slit edges is of arbitrary nature 

t ?q = 0,) (2.17) 

where F (r) is an arbitrary fnnction. At the same time, boundary conditions of the elastic 

problem may be given in the form 

Iv1 = a (4, b,l = B (4, IT,1 = y (4, zxv = F (0,) on L f2.M) 

It is easy to see that the solution of the last problem (2.18) will be expressed by the 

equation (2.11) and by (2.13) in which g*(r) is 

g* (t) = F (V+(t)} 

v*(I)=Re{~~i(‘1+2~C~ +(2nu+bo)t+2al+bl} 
(2.19) 

i 

Here, as previously, the principal value of the integral is considered. Let us 

emphasize that the expression (2.11) is solely the result of conditions of discontinuities 

in normal displacement and also in normal and tangential stresses on L. 

3. Strwtgtb of brittle bodies in Compression- We will assume that a real brittle body 

contains a large number of randomly distributed microcracks or slits. It is impossible (and 

unnecessary) to determine the interaction between these microcracks exactly, hence the 

following approximate approach will be employed. 

We will choose one arbitrary microcrack and ‘blw’ all other microcracks throughout 

the body, replacing their influence on the chosen microcrack by the influence of an elastic 

body which we shall now consider homogsneotts. This body will have average elastic 

constants and will contain no cracks (except for the chosen one). Let us consider the 

stress problem in the vicinity of the chosen crack. 

Thus, let us consider a straight crack which is plane deformed in a stress field of two 

principal compression stresses N, and Ns. The crack of the length 21 lies along the r-axis 

with its center at the origin of Cartesian coordinates sy. Opposite sides of the crack touch 

each other at every point due to compression loading so that the crack in this case re- 

presents a line of discontinuity of the tangential displacement u only. The displacement 

component u, normal to the crack surface is not discontinuous. Equilibrium considerations 

require also continuous stresses u 

woold describe the interaction of t I 

and T . Another condition should be added which 

e oppo%e sides of the crack when they touch each other. 
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This condition will be assumed as the one of dry Conlomb friction with coupling. The 

coupling constant k and the friction coefficient are assamed constant along the entire 

crack (k > 0, p > 0). 

It should be noted that condition of dry Coalomb friction with coupling is a more or 

less good representation of physical conditionsof the real problem only if the opposite 
sarfecss of the crack slide along each other. If such sliding does not take pIace (e.g., if 
the crack lies in a plane of the principal compressive stress), this condition becomes an- 
acceptable. Finally, the boundary conditions are written as 

[ 1-0 v - , (3.1) 

Due regard is given to the sign of the stress uy in the last condition of (3.1) (also, 
the direction of shear is given). 

The elastic problem (3.1) is a particular case of the general problem (2.6). Obviously 

the following relations hold : 

a(z) = fl (z) = y 1%) = 0, k (4 = k, p (z) = p, f (zf = 0, a0 = &i, = 0 

=a =bp=O 

g’ (t) = g = - 2ik + ip [N1 + N, - (fV1 - NJ cos 2tzj 

C, = C, = 0, C, = ‘loi(NL -N,)sin2u(N,<O, N,<O) 

In the particular case (3.21. the formulas (2.10 and (2.13) will become 

(3.2) 

2@w+Q@) = 2ar+bi, 
WA-g)z 1 

w=21/z,_r+~r+Rebt (3.31 

We will now consider the state of stress in the vicinity ui the end of the craak at 

a = I + e, where e = @(r < I) When z -, 1, fanctions 6, (xl and n (x) become 

P (2) = - 2@ (2) = f2C1- g) JQ ,-‘/#I + * (*) 
2jf% 

(3.4 

(r and 8 IUS polar coordinates with their centre at z = I). Hence, according to (2.1) the 
stresses at the crack tip may be written as : 

U.&f “zwe= Bi)/lip l / r (3 _ .-ie - i sin @.pie)e%~e 

bv - it?, = Bi ?I/% I j r (- i - e-” + i sin e‘~~~)~‘siG 

B =*/~[2k--p(Nl+ Ne)+(Nl-N~)(pcosEa+sin2a)] 

(3.5) 

According to (3.51, the stress components are expressed in polar coordinatea t and 8 
by formulas : 

o,+a,=o,+ali=-44B V-sin ‘j&i 

%I-- O, + 2ir,., =.2B flNlr ie*M (2 _ i sin &-‘a) (3.6) 

In particular, the stress components along the real axis i.e. when y - 0, are 



104 C.P. Chcrepanov 

by = u = ‘I1 [A’, + N, - (N, - Na) cos 2aJ 

r xy = 
1 

--kP5 for 132 I<1 
-k+ppa+2B1rI/ I/Lz?-P for (I I>2 

ax = z = VP [N, + N, + (N, - N,) cos 2a] for I z I > 1 
(3.7) 

o,=~-4Bx/I/l~-- 29 on the upper surface for I x I < I 

a,=rf4Bx/jb-sa on the lower surface for I x I < 1 

Obviously, the stress crY along the crack and in the direction following it is constant 

and equal to the same etrese (I 
Y 

which would exist at every point of the body if the crack 

were absent. This is easily seen to be true for any number of cracks which are distributed 

along one and the same straight line. This fact is also independent of the nature of inter- 

action between opposite sides of cracks and follows only from conditions of continuity of 

normal displacement, shear stress and of normal stress. 

The stress U, is constant on the line of extension of the crack. At 1 z I < I , near to 

crack tips, the etrem ox tends to be infinite, the sign being different for the two ends 
along one side and also for two sides at one and the same crack tip. Finally, we introdace 

a formula describing ehear stress concentration at a tip of the crack and on its line of 
extension : 

T* = 2B .t/‘/p 1 I r + 0 (1) for gJ = 0, 2 = 1 + r (3.8) 

We now make uee of the hypothesis A : a crack under compression will always be a 

transverse shear crack. 

Introduction of this hypothesis is justified by the fact that in the vicinity of a crack 

tip and on its line of exteneion, stresses ey and oe do not have efngularitiee and only the 

stress 7 
eY 

tends to infinity, in accordance with (3.3). It is natural to assume, therefore, 
that the oneet of crack propagation is determined only by the concsntretion coefficient 
of the shear etreee T ey. Simple compntatione, according to (3.61, fnrther show that 7% is 

the mufmnm shear stress at the points of the body near the tips of the crack and on te iv 

line of exteneion. The critical load follows from the condition [l] 

2nBJfi=-L)/2 (L > 0) (3.9) 

We shell now determine dietribntion of the most dangerous transverse shear cracks. 
These are obviously the crecke at whfch the critical value of the shear stress concentra- 
tion coefficient is attained first, for otherwise equal conditions. This meane that the 
orientation of the most dangerous cracke is defined by the angle which mfnfmfeee the 

modulus of the function B (~1. Analysis of the fnnction B (a), given by (3.51, ehowe that 
depending on the direction of relative eheu of the oppoeite sides of the craok end of the 
relationehip between N, and N,, the most dangeroue cracks may lie at the angle of 
% cot-l p or at the angle of ?W + % cot-t p with the direction of N,. For example, for 
p - 0.3, the value of W cot-‘p ie 37'. In this case, if the friction coefficient p t eqoal 

to ego, which correeponde to the cue of coupling (edheeionl friction between opposite 
eurfacee of the crack only, the meet dengeroee ehear cracks will be dietribated at the 
angle 45’to the planee of principal utreeeee. The Ieet reealt ie identical with a correeponding 
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result obtained from the simplified theory. 

In case of uniaxial compression of a body containing the most dangerous crack, the 

condition (3.9) will become 

6,. = ,,-i;9_ ( 
Jf/zL 

k+ a > (3.10) 

FIG. 1 

The formula (3.10) defines strength of 

au isotropic brittle body in compression as 

a function of the shear cohesion modulus L, 

of the coupling (adhesion) constant k, of 

the friction coefficient p and of the original 

length I. The higher the magnitude of k, L 

and p , the higher the compression strength 
a+ of the body. The shorter the original 
crack length, the higher the strength u+. 
Equation (3.10) shows also that as soon as 
the load attains the limiting value o+, the 

eqailibrinm of a body containing a crack 22 
long becomes unstable and further increase in load leads to dynamical growth of the crack. 

In case of ideally smooth snrfacas (k = 0, p = 0) the compression strength of a body 

equals the value of strength which was obtained from the simplified theory (first equation 

of (1.5)). 

It is of interest to compare the modnli of cohesion L and K. By using the second 

formula of (1.5) and the relation (3.10) we obtain: 

k L 5+ -ff+P--P 
K-6 1 2 

-- 
Qs 1 

(3.11) 

4. An arbitrary ‘eltmed’ eraok. Let us consider a brittle body of arbitrary shape under 

some loading, which contains an arbitrary cnrviiinear crack such that its opposite sides 

touch each other at the end of the crack (sayrbecause of the local compression). Let us 

choose the origin of polar coordinates r8 so as to coincide with the tip of the 

crack in question (8 = 0 corresponds to the direction of the crack extention). It 

may be shown, by using the ‘microscope’ principle and the formula (3.6), that stresoes 

urr uu, 778 and rmax behave close to the crack end as follows: 

ce = B @,Z)6, (e)?+, Z?Ll =B (p, Z)6, (o)~*~ 

Tmax = B (p, 2)6, (0)~“*, ug + up = - 4B @, Z)r+ sin’/2 0 (4-I) 

Where 

6, (0) = 2 cos 5/S 8 + sin 8 sin Vz 0 

b(@ = - 2 [sin 8/a 8 + (sin 1/a @*I, 6, (0) = V6/, + */, cos 20 

The function B (p, I) dependa only on the external load and on the rhape of the body. 

Fmtotions 6, (6), 6, (6), and &a (f3) are nhown in Fig. 1. 
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It is obvious that all stresses (and any homogeneous combination of stresses) at the 

end of the crack may be written as a product of a function R (p, I) reH , which remains 

the same for all stresses and of some function $which is characteristic for a given stress 

(or combination of stresses). This remarkable circumstance follows only from conditions 

of contact of opposite sides of the crack at its ends (i.e. from conditions of continuity 

of the normal displacement, normal stress and shear stress). The remaining boundary 

condition may have an arbitrary character and be more general than (2.17). 

This property, which is typical for ‘closed’ cracks, is rather distinctive in comparison 

with the case of the crack with load-free sides at the end. It enables formulation of the 

following conclusion. 

The behavior of a ‘closed’ crack is completely self-governing. i.e. the direction of 

crack propagation and the nature of fracture (and also the limiting concentration coeffi- 

cient) do not depend on the shape of the body and on external loads bat are folly defined 

by material properties at the crack end. This argument will be called the Autonomy Law. 

Cracks considered earlier were aabumed to propagate along a straight line or were forced 

to propagate that way (e.g. by cementing). The Autonomy Law allows us to analyze this 

assumption. According to the Autonomy Law, the crack propagation direction and nature 

of fracture are fully defined by the fnnctions 6, (e), 6, (e), and 6, (0) (or by some 

other functiona provided that they thamaelves are completely defined). 

Let as cowider the cnrves of Fig. 1. It can be seen that the shear stress ‘tru, is an 

even function of 8 and has three extremespne at 8 = 0” (6, = 2) and two at 

8= f 124" (6, = -1.27).N ormal stress U@ is an odd function of 6 and has, similarly, 

two extremes of opposite signs, at 8 = & 75" (6, = r 2.32). 

Analysis of these curves enahles us, to explain the basic tendencies of crack pro- 

pagation and the very mechanism of fractnre itself, in terms of the Autonomy Law. 

Fracture may occur by means of the shear mechanism, and the crack always propagates in 

the direction of the highest shear stress Zre i.e. in the direction of the extended crack 

line 8 = 0, as soon as the absolute magnitude of B @, 1) attains the limiting value 

Such cracks are always straight, in agreement with the Autonomy Law, since the 

above theory refers to straight cracks. 

Fracture may also occur by means of the tear mechanism, because in the region 

0<8<n, orat - n < fj < 0 a tensile stress (Jo always exists and the normal 

tearing crack always spreads from the end r -0 in the direction of maximum tie, i.e. at the 

angle of 8 = + 7.5’. or 8 = -75’ as soon as the modulus of the magnitude B (p, I) attains 

the limiting value 

B (p, I) 1 = 0.14K 
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The normal tearing crack has, in the beginning, load-free surfacea since it lies in a 

tensile stress region. During subsequent propagation, it enters inevitably the region of 

compressive stresses, and becomes a ‘closed’ crack, i.e. becomes subject to the 4utonomy 

Law. The crack then has two alternatives: it either propagates in a straight line (shear) or 

deviates by c 75’ or -7S” (tesring) from the original direction. Depending on the final out- 

come, the crack may finish with a completely arbitrary shape ranging from a straight line to 

a stepiike or ‘sprucelike’ curve. 

Symmetry considerations and the Autonomy Law indicate that in an ideally homogen- 

ous material and in a homogeneous field of stress, a crack will either have a strongly 

periodic structure or will be more or less straight (if the shape of original defect is 

neglected). 

The ‘quantum character of the dfrectfon of 

propagation discussed above, represents a signifiltant 
feature of brittle cracks in compreaaed oolfd. 

Thus, cracks in compressed bodies generally 

possess a stepwiae structure with known dfractfon 

of individual steps; the length of aaeh atop de- 

pends on the elastic atmsa field present fn tha 

body. 

FIG. 2 

A mathematical soltttion of the elastic problem 

of stepwfse crack fa rather complfuated. However, 
when the charactdath Iengtk of one step is small 

in comparison wfth the entire length of the crack, 

the stepwiee structure will he just a fine structure of aome average smooth crack. Such a 

large-scale smooth crack may be agafn analyred by the method described above, whfch leads to 
similar results. Then, the elementary volume should be Larger in comparison with the char- 
acteristic size of the fine step. In particular, for Large cracks a generalized Autonomy Law 

holds which indicates that the macroatntcture of the crack baa, generally speaking, a atep- 
wise structure with a specific dtection of reparate steps tOoand 759. When the body is 
sufficiently large, a sequence of atepwiae stmctarsa differkg in sirs may be generally 

observed. 

3. The tack bust. The rock barat is one of the moat challenging caaea for the appli- 

cation of the theory of crack propagation on compressed bodies. The rock burst is a sudden 

outburst of matter into the excavated apace without the release of gas. The higher the 

rock preaawe and strength of material is [2 and 31, the more dangerous it becomes. 

The effect may be visualized using a simple theoretical pictwa. Let us assume that 
in a homog~eous, isotropic brittle body there is a horixontal excavation of height h 
(Fig. 21. The excavation is of a usual shape which is close to a rectangular one and is 

within apresswe field generatad by the rock(Nr is the horizontal, NI is the vertical pressure). 

An analysis of elastic stresses shown that in front of the excavation at a distance of 
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about (1 to 2) h there is an interior focus of concentration of the specific elsetic energy 

and of the compression stresses ox (shown by the dashed circle in Fig. 2). It im within 
this region, that the shear cracks A0 and OB originating at the sides of the most danger- 

ous natural cracks, begin to form and propagate. 

During this period which precedes the rock burst a crack forms at the site of unstable 
shear cracks, and continues to grow in certain directions, anti1 a stable sixe which is of 

order of the region of concentration, i.e. of order h is reached. Cracks A0 and OB form 

a wedge which is pressed out by rock pressure. The magnitude of the force P acting on 

the wedge is approximately equal to 

(5.1) 

where pt and & are atress concentration factors. Thus, the compression strength a+ plays 
a decisive role during the first period. The second period is characterired by catastrophic 

propagation of cracks from points A and B towards the corners of the excavation other foci 
of stress concentration being present at these corners, and by sabssqaent oatburst of the 

matter. 

In the instant preceding the outbwst, the force P is in equilibrium with the resistance 
of the material of the r-k, which is equal to ~u&(u, is the shear strength of the material). 

Hence we have the relation 

&NI + PINO = 4 $ is8 (5.21 

Immediately before the second period there occurs a redis- 

tribution of stresses leading to an increase of P and decrease 
in A (the excavation movea forwardm). 

Thus, a rock burst is the result of action of the internal 

focus of concentration of specific internal energy end of com- 
premsion stresses in front of the excevation. A change in the 

FIG. 3 shape of the excavation coneistiug k snbseqoent transition into 

a cone would remove the danger of a strong rock burst because then 

the focus of stress concentration would form at the casp and all fractures woold be ac- 
companied by an instant decomposition of mater so that elastic energy would not con- 

centrete. As en example, forms of excavations shown in Fig. 3 are safer then the usual 

form. (An ideally safe form would be the form of natural shear). 

Finally, we consider the problem of modelfng of the rock buret. Aa shown earlier, the 
decisive parameters are L, K, u,, and 6,. We shall denote the cbuacterietic linear 

dimension by d. The magnitude of rock presswe will be denoted by p (e.g., NI = JJ, 

NL = yp, y < I). According to the VT- theorem: 

The function r has to be determined from experiments with models. 
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